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Abstract 

In this note we show how partial fractions may be used to derive the 

properties of linear recursive sequences and,   in particular,   of Bose-Chaudhuri 

codes.     One of the novel features of this method is a new and transparent 

proof of the basic result of Mattson-Solomon. 
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Partial Fractions and Error-Correcting Codes 

There have appeared several expositions of the theory of Bose-Chaudhuri 

codes—see,   for example,   references   [2],   [3],    [5]   and  [6].     Perhaps the most 

interesting version,   in that it leads to the deepest results,   is  due to Mattson 

and Solomon [4].     The distinctive feature of their approach arises from the 

representation of each code vector as the set of values taken on by a certain 

polynomial at certain roots of unity; in this way the weight of a vector is 

related to the number of roots of a polynomial. 

In this note we show how partial fractions may be used to derive the 

properties of linear recursive sequences and,   in particular,   of Bosc-Chaudhuri 

codes.     One of the novel features of this method is a new and transparent proof 

of the basic result of Mattson-Solomon. 

We shall work over the two-element field   F = { 0, l} .     Essentially, 

all our remarks will carry over to the case of an arbitrary finite field,   but 

the details of the carry-over will be left to the reader.     If  x   is   an   indeter- 

minate   over   F,    then   F[x]    denotes the ring   of all  polynomials     f(x)   = 

=   c     + c.x + c_x    + ••• + c   x      with coefficients in   F.     We let   F (x)    denote the o 1 2 n x   i 

ring of formal power series with coefficients in   F.     In other words,   an 

element of   F (x)    is of form 



a(x) = a    +a,x + a,x    + • • - + a   x    + •••=/,     a.x a.e F x   ' o 1 2 n *->        l l 
;D 

i = o 

00 

ind if,   in addition,    b(x) =   ^     b.x   eF(x)    then 

i=o 

a(x) +b(x) = YJ   (aj +b.)x1 (2) 

and the   n       term of the product   a(x)b(x)   is 

n 

(a(x)b(x))n = (2      ajbn.j)
xn (3) 

We shall also identify   F (x)    with    V(F),   the set of all infinite sequences from 
00 

F  under the obvious correspondence 

a    + a.x + a_,x    + o 1 2 
(a   , a,, a0, • • •   ) o     1     L (4) 

In particular,   the vector space   V (F)   thus has the structure of a ring. 
00 

Suppose that   f(x) = c     + c.x +•••  + c   x    e Ffx]   has   c     = c     =1   and rr o 1 n on 

oo 

that   a(x) =    )   a.x   e F (x) .     We say that   a(x)   is   linear recursive for   f  when 

o 

the following relation holds: 



a. = c.a.   ,  + cna.   _+•••+ c  a. for all  i > n (5) 
1 1   l-l 2   i-2 n   l-n 

These conditions may also be rewritten as 

c   a.  + c.a.   .+•--+ c   a.       =0 for all   i > n (6) 
o   l 1   l-l n   l-n 

The set of all elements of  F (x)    which are linearly recursive for   f   is denoted 

by   G(f). 

Our first observation provides a simple characterization of   G(f), 

namely, 

Proposition 1:      G(f) =  { f$?)  | g(x) e F[ x] ,   deg g   <   deg f} 

Proof:      Consider   a(x)eF(x).     Since the coefficient of  x    in   a(x) f (x)   for 

ii 

i 5   n   is      )       c.a.    .,    it follows from   (6)   that u        J   i-J 
j=° 

a(x) e G(f) <      >    a(x)f(x)   is a polynomial of degree   <   n = degf(x) 

<=*    a<x)=f^j    «   g(x)eF[x],   degg<   degf 

Corollary  1:      G(f)   is a vector space of dimension  n = degf  over   F. 

Corollary 2:      If  f  | f     then   G(f,) C  G(f?);  moreover equality holds if and only 

if  fl = f2- 

Corollary 3:      If  f,   and  f?   are relatively prime   then 

G(f1f2) = G(fx) + G(f2) 

Proof:      In virtue of   Corollary 2, 

G(fx) +G(f2)C G(f!f2) 



Suppose then that  ac G(f f?),   and put  n.  = degf.,   i = 1,   2.     Thus we have 

a = g/f,f?   with  deg g <   n   + n        We assert that 

e        gl        g2 
7-4- = r-  + -f—     with   degg    <   n i = 1, 2 (7) 
12        12 X 

and we give a constructive proof of this fact.     Since   (f., f?) = 1   there exist 

polynomials   k , k     such that   kf    + k_f?  =  1.     Therefore,    gk,f,  + gk?f? = g, 

and by the Euclidean algorithm we may write 

§kl = tf2 + g2 deg§2 <   n2 = degf2    • 

In other words, 

g = gz\ + (gk2 + tf1)f2 

Since   g   and   g^f,   have degree   <    n,  + n?,    it follows that   g.  = gk^ + tf,,   has 

degree   <    n..     These are the desired   g.   and   g Thus,   a   ae G(f )  + G(f?), 

and the proof is complete. 

Corollary 4:      For arbitrary   f.   and   f?   of degrees   n1   and   n     respectively, 

let   d = gcd(fr f2)   and  m = lcm(f , i^; then   G(f )  fl G(f2) = G(d) and 

G(f}) + G(f2) = G(m). 

Proof:      Choose polynomials   k., k?   such that   k f   + k?f?  -  d.     Then 

G(f1)  0 G(f2)C Gfls^) flG(k2f2)C G(d)C G(f:) n G(f2) (8) 

where the non-trivial inclusion may be proved as follows.     Suppose 

n gl g2 
ae G(f1f1) II G(k2f2) - so  a =  ^J ~ ^Y~    wlth  deg gi <   degkifi'   i = 1» 2< 



Therefore, 

a " klfl + k2f2   "        d 

and it remains to show that  deg (g, + g2) <   degd.    But 

deg (gl + g2) = deg (glk2f2 + g2V2) - degk^ 

* deg (g^ + g2k2f2) - degk2f2 

= deg (kjfj + k2f2) - deg k2f2 + deg g2 

= deg d — (deg k2f2 — deg d) 

<   deg d   . 

Since   G(f.) + G(f?) (_  G(m),    it suffices to prove that these vector 

spaces have the same dimension,   and in view of the above this follows from 

dimlGtfj) + G(f2)) + dim(G(f1)  fl G(f2)) = dimGI^) + dim G(f2)    . 

This completes the proof. 

Corollary 5: G^)  fl G(f2) C G(^ + i^ 

Proof:      Trivial,   since   d | (f.  + f?).     Of course,    f.  + f?   has no constant 

term,   so   G(f,  + f_)   should be defined by  dividing  f. + f     by the power of   x 

which will yield a constant term equal to   1. 

Corollary  6 : If  f.   and  f?   are relatively prime   then 



G(f1f2) = G^) ®    G(f2)        direct sum 

Let us define a linear transformation,   called translation,    of   F /x) . 

00 00 

For   a = 2J a.x  £ F (x) ,   put  aT = ^ a-+ix • 

o o 

Proposition Z:      G(f)   is translation invariant;  in other words,    if   a e G(f)   then 

aTeG(f). 

Proof:      If   a =   g/f   and -we let   g     denote the constant term of   g   then   (since 

g°   =   a°} _ £ 
S. _ §0       (f !o) <g _ fg   ) 

aT=—    =—X    ,    deg       x      -   <   degf   . (9) 

Let   £2   denote a fixed algebraic closure of   F,   so that   f(x)   has   n 

roots   6.,..., (3     in   fi.     For convenience and because this is the most interest- 
1 n 

ing situation,   we shall assume henceforth that   f(x) has distinct roots.    Since 

every element of   £2   is a root of unity,   there exists a smallest integer   m 

with the property that   ((3.)       = 1   for   i = 1,..., m.     In other words,    m   is the 

unique smallest integer such that  f (x) |  (x      + 1).     Note that   m   is odd—for if 

m = 2k    f(x)| (x2k + 1) = (xk + l)2 —>    f(x)|(xk + l).     If we put 

* xm + 1 
f   (x) =   flxl (10) 

tht gW   , n.it\r r.t• en   a(x) = -^—<   e  G(f) C  G(x + 1)   can be written in the form 

.   .        fi(x) f   (x) .       ,   ,*. 
a(x) =  sLJ. LJ. deg(gf   )   <    m (11) 

x      + 1 



Now,   for an element   a(x) e  F 'x)    it follows from 

i   x    m ^    2m J.     3m A n->\ =   l+x      +x +x +••• (12) 
1  +xm 

that   a(x)   has   m   as a period   <      i    a(x)(l + x    )   is a polynomial of 

degree <   m  <      >   a(x) e G(x      + 1).     We have therefore: 

Proposition 3:      Let   m  be the smallest integer such that   f(x) | (x      + 1); then 

every element of  G(f)   has   m  as a period and,   in fact,    m  is the smallest 

common period of the elements of   G(f). 

It is of interest, though not in the main stream of the present dis- 

cussion, to take a slightly different viewpoint. With the notation as before, 

for   a(x) e  G(f)   we may refer to 

alxMl + x    ) = a     + a,x + •••  + a       .x 
o 1 m-1 

as its periodic part   and this determines an element in the residue class 

ring   R   =   F[x]/(x      + 1).     More precisely the map 

a(x) -^ a(x)(xm + 1) (13) 

is an isomorphism of   G(f)   into   R.     Thus,   we may view   G(f)   as contained in 

R,    and when this view is taken we have: 

Proposition 4:     G(f)   is the ideal   Rf*of R 

Proof:      In   R     G(f) =   { gf"~ | deg g <   deg f} C     Rf  •      On the other hand,   any 

polynomial   g   can be written as   g = kf + r   with   deg r <   deg f.     Since ff    =0 



in   R,    it follows that   gf'   = rf' —so   Rf'    = G(f). 

Let us return to an arbitrary element of   G(f); it is of form 

a(x) = g(x)/f(x).     Since   deg g <   degf  and   f(x) = (x + p^)--- (x + fi^)   we have a 

partial fraction decomposition   (see [ 1] ) 

,   v      a, a 

L(X) "fTxT- x-Tp- +-'- + TTT (14) 

The coefficients   a.   are unique and come from the splitting field   K  of  f(x) 

over   F.     Now,   expansion of   (14) yields: 

g(x) .. y "i  s, V   i   /J \ 
fR " L x + p "• L jr  i     x ) 

1 X      1      *       i + J3. 

n r- oo ."] 

•2 ft   2 (rY } 
i=l L i=o 

n     oo 
-(j+1)   • 

i=lj=o 

(15) 

Thus,   the coefficients of  a(x)   are given in terms of elements from   K  by 

n 
-(j+1) 

a. =   YJ    OfjP. j=0,l, 2,.. 

i=l 

(16) 

Fix a primitive   m       root of unity   £,    where   m   is as in Proposition 3. 



Thus,   there exist distinct integers   r.   for  j = l,...,n   such that 

1 r' 
p\~    =  £    J 0 <  r. < m -1 (17) 

J J 

Upon reversal of notation in   (16),   we get 

-(i+1)       n r.        .  r. 
aj =   Z    "jPj =   E    (af    JH^)  J (18) 

1=1 1=1 

If we then put 

n 
r.     r. 

P(x) = X     (a.£    J)x J (19) 
a J 

j=l 

then clearly 

P   (f1) = a. i = 0,1,2,... (20) 
i 1 1 

We have proved (see   [4]) 

Proposition 5 :      For each  a £ G(f)   there exists a polynomial   P   (x)eK[x] 
1    •  a, 

with   deg P   (x) s max { r.}    and such that   a.  =P   (£   )   for   i s 0,1,2,..,   . a j l a 
r. r. 

If we had written   Q. = £    J   (with different   r.)   instead of   3.      = t    \ 
J J J 

formula (18) would become 

n 

a. •  J    (aj£      JH£ _1)  j (2D 
j=l 

n 
-r. 

and the polynomial   P   (x) = V     (a.£        )xJ f K[x]   would satisfy 
a <-*        j 

j=l 

9 



P   (£     ) = a.,   i = 0, 1, 2,...   .     All this amounts  solely to the use of the primitive 

m       root of unity   £       instead of  £ .     The use of any other primitive   m       root 

of unity would give an analogous result,   but with different values for   r..     When 

it is necessary to emphasize the dependence of   r.   on  f ,    we shall write them 

as   r.(£ ). 

It may be noted that for any a(x) £ F (x) with odd period, m say, we 

may write a(x) s g(x)/x + 1, and according to Proposition 5 there exists a 

polynomial whose value at   £     is   a.   for all   i ^ 0. 

Now,   let us look somewhat more carefully at formula (14);  we shall 

also change notation in the process.     Let  a    denote the automorphism of   fi/F 

such that   (7 (£) = £      for all   £ £ fi; then for any finite extension   E/F,    a   is a 

generator of the Galois group of    E/F f(x) is a polynomial of degree m 

with distinct roots which divides   x      + 1,    m odd.     The irreducible factoriza- 

tion of  x      + 1   is of form 

xm + 1 = (x +1) f^x) fz(x)--. fs(x) (22) 

where each  f.(x)e F[x]    is irreducible,   and they are all distinct.     The   f.   may 

have different degrees,   but it may be observed that when   m   is an odd prime 

,ii              i                      i                 m — 1 they all have the same degree   . 

Since   f(x) | (x      + 1),    it is of form (with re-ordering,   if necessary) 

f(x) =  (x + l)6   fx(x) ••• ft(x) 6   = 0   or   1,   t <  s (23) 

Denoting the degree of  f.   by   n.,    we may index the roots of  f.   by 

10 



7                 n.-l 
{f.,(Tf.,(j   i.,...,a   1   £.} isl t.     In particular,   the field  E.  = F(£.) 

is the splitting field of  f.(x)   over   F   and its degree is   n.;   K   is the composite 

of all the   E..     Any element   a(x) = j,—r   c G(f)   may be written uniquely (as in 

Corollary 3) in the form 

g0U)        gx(x) gt(x) 
a(x)= xTT  + TJIj +"" + yxT        *i«FIx]. de§gi< ni (24> 

where,   of course,    g   (x)   is a constant   and is   0   when   x + 1   is not a factor of 

f(x).     By decomposing each term on the right we get a unique expression 

o ' 1 
a(x) =  -2—.  + -i-r-  +—   +•••  + % .  +.-.+-L— +...+-5 . x   '       x —1       x— 4.       x-ff^, n.-l x— L n-1 

x — a £. x —a      j 

(j) (25) 
where   71    =   0   or   1   and   77.,77*.     eE..      Now,   extend  a   to   an automorphism 

'o fi   ' 1 1 

of    ft (x)   by putting   a x = x; thus,   for example,    a (   ' _ ,.) = —-j-  .     Apply, 

this extended  a   to both sides of (25).     The left side is unchanged (since 

a(x)eF(x)),   hence  so is the right side.     By uniqueness,   we have then 

<7T).  =TI..     ,     i = l,...,t.     Repeating the process,   yields   a ry.  =17.     .     If we let 

S.   denote the trace function from   E.   to   F   (so that   S.   is the operator 
1 11 

2 3 n" 
o   + a     + o     + • • •  +CT     )   then: 

Since 

11 



we may write 

oo oo oo 

fg-E vJ+Z wfO+Vt-tZ st(¥t-«+1V 
j=o j=o j=o 

The conclusion is then: 

Proposition 6:      Suppose that  f(x)   has distinct roots,   and let   £••»...» |t  be 

representatives  of the different conjugate classes of its roots  (i. e.   the   £. 

are roots of the distinct irreducible factors   f.   of  f)   and put   £     = n     =  1,   E    =F, l r o       'o o 

or   ^     = V    = 0,   E    = (0)   according as   1   is or is not a root of  f(x).     Then given 

a(x) e G(f)   there exist unique   )).(E.  = F(|.),   i = 0,1,..,, t   such that 

aj=^o + £    Si(Vi"(3+1)) JS0'U'- (27) 
i=l 

By examining the proof of Proposition 6,   we have the following 

immediate consequence. 

Corollary 7: Let the hypotheses be as in Proposition 6; then there is an 

additive isomorphism between G(f) and the additive groups of the formal 

direct sum    E    ©E   (+)•••  © E —-it is given by 

m ^V^i V 

We have been fussing with the distinction between the cases where   1 

is or is not a root of  f(x).     In terms of knowledge of the codes   G(f)   and their 

1Z 



distance properties this distinction is inessential.     To see this,   suppose that 

1   is not a root of  f(x)   and that the mesh of   G(f)   (meaning the minimum distance 

between elements of  G(f),   or what is the same,   the minimum weight of a non- 

zero element of  G(f))   is    5:   d,   while the diameter of   G(f)   (meaning the 

maximum distance between two elements of   G(f))   is   ^   D.     Since 

dim G((x- l)f) = dim G(f) + 1,   it follows that   (1,1,..., 1)   (  G(f).     Let 

Glf)= { a + (1, 1, 1,..., 1)| aeG(f)} (28) 

so that 

G((x- l)f) = G(f) U G~[f) disjoint (29) 

Of course,   this is just the coset decomposition of   G((x — l)f)   with respect to 

the subgroup   G(f).     We see then that 

mesh G((x- l)f) > min{ d, m - D} (30) 

where   m   is the period (i.e.   the smallest integer such that   f (x) | x      — 1)   or 

to be more precise 

mesh G((x — l)f) = min { mesh G(f),   m — diam G(f)} (31) 

Therefore,   it will be necessary only to consider the situation where   1   is not 

a root of  f(x)—since (31) relates the error-correcting properties of (x — l)f(x) 

with those of   f(x).     This assumption that   1   is not a root of  f(x)   means that in 

formula (27) we have  r\    = 0. 'o 

13 



Now,   in order to make use of (27) it is advisable to assume that 

t a 1 in other words,   that   f(x)   is irreducible.     Then,   according to 

Corollary 7,    G(f)   is additively isomorphic to   E1  = F(£ ),    and an element 

7]   e E.   corresponds to the sequence with 

a. = S1(T?1£1"(j+1)) j = 0,1,2,... (32) 

Since the trace is a homomorphism of  E,   onto   F,   it follows immediately 

that: 

Corollary 8 :      Suppose that   f(x)   is irreducible.     For each  j   the   j 

coordinates of the elements of   G(f)   are half zeros and half ones. 

Needless to say,   this result can be derived in other ways also. 

Another standard fact which is an immediate consequence of (32) is: 

Corollary 9:      Suppose that   f(x)   is a primitive polynomial of degree n,   then 

every element of  G(f)   (except the zero vector)   has   2      '   ones and   2        — 1 

zeros. 

T-, r y •*• ->n        ith , r        .    -(j+l)-l Proof:      4,   is a primitive   2—1        root of unity,   so \ T],£, /    runs over 

all non-zero elements of the field   E.    (for   77    f-   0). 

From our discussion,   it is clear that (20) and (27) are equivalent as 

far as the properties of  a(x)   in   G(f) are concerned.     However,   (20) is often 

more useful,   since it gives an immediate bound for the weight of  a(x).     More 

precisely,   with   £    as in (17)   let   ^ (£ ) = { 1, £ ,...,£ }    be the multiplicative 

group generated by   £ .     Then the polynomial   P   (x) of (19) provides a function 

from   p (£ ) — F.     Now the weight of  a(x)   can be expressed as 

14 



a(x)||   = #{ Uz(£)| p
aU) = 1} 

= m-#{2(£)fl   ker P   (x)} 
0 a 

Now deg P   (x) ^ max r.   so that   ker P   (x)   has   ^   max   r.   elements,   and 
j        J a j        J 

a(x)     s m — max   r. 
i J 

Of course,   P   (x)   has a very special form (essentially,   it too can be expressed 

in terms of traces) and we hope to discuss  such matters in a future note. 

15 
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